Robust Multi-stage Nonlinear Model Predictive Control

ثبت نشده
چکیده

Model Predictive Control (MPC) has become one of the most popular control techniques in the process industry mainly because of its ability to deal with multiple-input-multipleoutput plants and with constraints. However, its performance can deteriorate in the presence of model uncertainties and disturbances. In the last years, the development of robust MPC techniques has been widely discussed, but these were rarely applied in practice due to their conservativeness or their computational complexity. This thesis presents multi-stage nonlinear model predictive control (multi-stage NMPC) as a promising non-conservative robust NMPC control scheme, which is applicable in realtime. The approach is based on the representation of the evolution of the uncertainty by a scenario tree. It leads to non-conservative robust control of the plant because it takes into account explicitly that new information (usually present as measurements) will become available at future time steps and that the future control inputs can be adapted accordingly, acting as recourse variables. Different aspects of the proposed multi-stage NMPC scheme are studied in detail in this thesis. Firstly, the approach is analyzed from a control theory point of view, including a formulation that guarantees stability and constraint satisfaction. Secondly, an efficient implementation is described, which is necessary to deal with one of the challenges of the presented method: The size of the resulting optimization problems. Thirdly, novel algorithms and modifications are proposed to enhance its performance and capabilities. The method is evaluated using examples from the chemical engineering field. Several simulations and real experiments presented in this thesis show that multi-stage NMPC is a promising strategy for the optimizing control of uncertain nonlinear systems subject to hard constraints. It is also shown that multi-stage NMPC performs better than standard NMPC and better than other robust NMPC approaches presented in the literature while still being implementable in real-time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Robust Model Predictive Control and Distributed Model Predictive Control: Feasibility and Stability

An increasing number of applications ranging from multi-vehicle systems, largescale process control systems, transportation systems to smart grids call for the development of cooperative control theory. Meanwhile, when designing the cooperative controller, the state and control constraints, ubiquitously existing in the physical system, have to be respected. Model predictive control (MPC) is one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015